

Higgs Searches at the Large Hadron Collider

Aleandro Nisati (INFN, Sezione di Roma)

P.le A. Moro 2 00185, Roma - I

aleandro.nisati@cern.ch

outline

- the LHC project
- the search of the Higgs boson(s) at the LHC: detector requirements
- the physics environment
- the ATLAS detector and its physics performance
- the search of the Standard Model Higgs boson
- the search of the MSSM Higgs bosons
- summary

the LHC project

Large Hadron Collider: proton-proton collider in the LEP tunnel.

Main parameters:

• Circumference: : ~ 27 km

• Beam energy at collision point: 7 TeV

• Luminosity: $1 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$

• Bunch separation: 24.95 ns

• Bunch spacing: 7.48 m

Higgs production at LHC

the Standard Model Higgs ...

The Standard Model Higgs boson branching ratios

the Higgs boson is "strongly" coupled with highmass fermions, W- and Z-pair.

the Standard Model Higgs -2-

The Standard Model Higgs boson is searched for at the LHC in various decay channels, each channel being viable only in a specific mass range:

- H $\rightarrow \gamma \gamma$ direct production; 100 < m_H < 150 GeV;
- H $\rightarrow \gamma \gamma$ from the associated production WH, ZH and ttH; $100 < m_{H} < 120 \text{ GeV};$
- H \rightarrow b \bar{b} from the associated production WH, ZH and t \bar{t} H; 80 < m_H < 120 GeV;
- $H \to ZZ^* \to 41$; $130 \text{ GeV} < m_H < 2m_Z$;
- $H \rightarrow ZZ \rightarrow 41$; $2m_Z < m_H < 0.7 \text{ TeV}$;
- H \rightarrow WW \rightarrow lvjj , H \rightarrow ZZ \rightarrow lljj and H \rightarrow ZZ \rightarrow llvv; 0.4 TeV< m_H < 1 TeV;

...and the MSSM Higgs

In addition to the above signatures, the Minimal Supersymmetric Standard Model Higgs searches also require sensitivity to:

- H/A $\rightarrow \tau^+\tau^- \rightarrow e\mu + \nu$'s or H/A $\rightarrow \tau^+\tau^- \rightarrow 1$ + hadrons+ ν 's;
- $H^{\pm} \rightarrow \tau^{\pm} \nu$;
- $H/A \rightarrow t\bar{t}$;

detector requirements

The basic detector requirements are:

- very good electromagnetic calorimetry for electron and photon reconstruction:
 - e.m. energy measurement (H $\rightarrow \gamma \gamma$; H \rightarrow ZZ* \rightarrow 2e2l)
 - photon direction (in η) to estimate the $H \rightarrow \gamma \gamma$ vertex;
- jet and missing E_T from calorimetry;
 - energy and missing transverse energy measurement (H \rightarrow bb, A \rightarrow $\tau\tau$, H \rightarrow ZZ \rightarrow llv ν ,...);
- efficient and accurate tracking at nominal luminosity for:
 - precise track momentum measurement (all channels);
 - b-quark tagging (H \rightarrow b \overline{b} , H \rightarrow ZZ* \rightarrow 4l,...);
 - vertexing;
 - enhanced electron identification;
- stand-alone, accurate muon momentum measurement; robust and flexible level-1 muon trigger (many channels of direct and associated production rely on high p_T muon tags);

physics environment

- small bunch crossing period: T=25ns → fast, finely segmented detectors; fast FE electronics.
- High radiation level; sources of radiation at LHC: particle showers induced by <u>particle</u> <u>production at the interaction point interacting</u> with the machine elements and the detector.

 Local beam losses and beam-gas interactions.
- → need of a performant shielding system.

Two important consequences:

- a. radiation damage of the detectors and of the
 FE electronics → Detectors and Electronics
 radiation hard;
- b. high occupancy of the tracking systems →
 fast, finely segmented tracking detectors;

Detectors at LHC

Two complementary experimental approaches to exploit the LHC p-p physics potential:

ATLAS (A Toroidal LHC Apparatus)

- <u>Central Tracker</u>: High-granularity radiation-hard semiconductor detectors at small radii complemented by highly redundant system of small-diameter drift tubes at large radii^(*)
 - → Pixel detectors + Silicon strip detectors + Straw Tubes (the "TRT detector");
- <u>EMCalorimeter</u>: fast, radiation-hard system

 → Liquid Argon with an "Accordion" geometry;
- <u>HAD Calorimeter</u> → Iron + scintillating tiles;
- Muon System: Standalone spectrometer with high precision momentum measurement down to |η| = 2.7 → large air toroid spectrometer instrumented with pressurized drif tubes; independent Level-1 Muon Trigger system based on RPCs and coincidence logic;
- Magnets: a central solendoid (B=2T) + 3 external air core toroids (B $\sim 0.5 1.0 \text{ T}$);

^(*) with transition radiation detector function

Detectors at LHC -2-

CMS (Compact Muon Solenoid)

The driving idea: a compact, simple apparatus based on a strong central solenoid (the only magnet of the spectrometer) surrounded by a high density calorimeter and an instrumented return yoke for muon detection.

- <u>Central Tracker</u>: → *Silicon Strip detector*;
- EM Calorimeter: \rightarrow rad-hard Crystals (Lead Tungestanate, PbWO₄);
- <u>HAD Calorimeter</u>: → *Copper + Scintillating Tiles*;
- Muon System: → an iron spectrometer based on the central solenoid return yoke instrumented with drift tubes (barrel) and Cathode Strip Chambers (endcap);
- Magnet: one large central solendoid (B=4T);

the ATLAS detector

artistic view of the Atlas apparatus

the CMS detector

the ATLAS detector physics performance: the Inner Detector

Transverse momentum resolution (muons):

$$\frac{\sigma(p_T)}{p_T} \approx \frac{0.013}{\sqrt{\sin \vartheta}} \oplus 0.36 \bullet p_T \qquad (p_T in TeV)$$

the ATLAS detector...-2-

transverse impact parameter accuracy:

$$\sigma(d_0) \approx 11 \oplus \frac{73}{p_T \sqrt{\sin \vartheta}}$$
 (µm)

electron reconstruction

EM calorimeter granularity: three samplings: 1) $\Delta \eta \times \Delta \varphi = 0.003 \times 0.1$ 2) 0.025 x 0.025 3) 0.05 x 0.025.

top plots: EM Calorimeter energy resolution for electrons and photons at $|\eta|=0.3$, 1.1 (left) and $|\eta|=2.0$ (right), as a function of the incident energy

right plot: TRT performance: pion efficiency as a function of p_T in various pseudorapidity intervals for 90% electron identification efficiency.

photon reconstruction

photon energy resolution: see electron energy resolution;

photon direction measurement crucial for $H \rightarrow \gamma \gamma$ reconstruction

$$m^2 = 2E_1 E_2 (1 - \cos \theta)$$

approximated formula for $E\gamma \approx 80$ GeV and $\theta \approx \pi/2$:

$$\frac{(\Delta m)}{m} \cong \frac{1}{\sqrt{2}} \bullet \left(\frac{\Delta E}{E} \oplus \Delta \theta\right) \cong \frac{1}{\sqrt{2}} \bullet \left(\frac{0.1}{\sqrt{E}} \oplus \frac{0.05}{\sqrt{E}}\right)$$

the Muon System

muon identification:

in ATLAS the muon can be identified and measured:

- by the external muon system
- by the combined central tracker and calorimeter systems (m.i.p. signatures for isolated muons).

The Monitored Drift Tube chamber instruments the high precision ATLAS muon spectrometer.

The single tube single-hit space resolution as a function of the drift distance, as measured in test-beam experiments; a typical space resolution of about 80 μm is achieved.

the muon trigger

Distinct feature of ATLAS: Level-1 Muon Trigger based on a *dedicated fast system*.

Instrumentation: Resistive Plate Chambers (RPC) in the barrel region and Thin Gap Chambers (TGC) in the endcap region.

Selection efficiencies for prompt muons at Level-1 and Level-2 ($\mu FAST$). The Level-2 efficiency accounts for the efficiency from Level-1.

muon reconstruction

Standalone muon momentum resolution; the main contributions to the measurement accuracy are shown individually as well as the global performance.

reconstruction fficiency (left) and p_T resolution (right) of track reconstruction in Muon system, in Inner Detector and of combined tracks, as a function of p_T .

tau reconstruction

the tau identification is based on the low particle multiplicity produced in the decay and on the small size of the jet radius:

1. R_{em}: the jet radius

$$Rem = \frac{\sum_{i=1}^{n} E_{t_i} \sqrt{(\eta_i - \eta_{clus})^2 + (\phi_i - \phi_{clus})^2}}{\sum_{i=1}^{n} E_{t_i}}$$

- $2.\,\Delta E_T^{~12}$: the fraction of transverse energy in the EM and HAD calorimeters present in a region $0.1 < \Delta R < 0.2$ around the centre-of-gravity of the cluster;
- 3. N_{tr} : the number of high- p_T tracks pointing to the calorimeter cluster within ΔR =0.3.

tau reconstruction -2-

Rem distribution for τ -jets (left) with different p_T (15-30; 30-70; 70-130 GeV) and for QCD jets (right).

Jet rejection as a function of the τ efficiency, as obtained over the region $|\eta|<2.5$ and in various p_T ranges. Straightline fits are superimposed.

b-jet tagging

The flavour tagging of b-jets is important because allows the reconstruction of signal events such as $H \to b\overline{b}$ and the rejection of background events such as $Zb\overline{b} \to 4l$.

strategy:

- 1.look for tracks with significant impact parameter to the pp vertex;
- 2.look for (soft) electrons and muons.

Left: Signed impact parameter, normalized to its error, for b-jets (solid) and u-jets(dashed).

Right: Background rejection as a function of b-jet efficiency.

$$H \rightarrow \gamma \gamma$$

- rare decay mode; appropriate for $m_Z < m_H < 150$ GeV;
- physics background:
 - irreducible:
 - Born qq $\rightarrow \gamma \gamma$
 - box gg $\rightarrow \gamma \gamma$
 - quark bremsstrahlung
 - reducible:
 - pp \rightarrow jet-jet and pp \rightarrow γ -jet in which one or both jets are misidentifed as photons;
 - Z → ee decays where both electrons are mistaken as photons;
- → severe requirements on EM calorimeter: excellent energy and angular resolutions needed;

However, at present $m_H > 107$ GeV from LEP2

$H \rightarrow \gamma \gamma$ (2)

- Irreducible background σ =1 pb/GeV for m_H =100 GeV;
- Reducible background jet-jet $\sigma = 2 \times 10^6$ pb/GeV; full dector simulation of large jet-jet event samples showed that this background can be reduced to ~ 2/5 of the irreducible one (ATLAS).
- Observability of the $H \to \gamma \gamma$ signal (direct and associated production) for $120 < m_H < 140$ GeV. The expected number of events in the mass window, chosen to be $m_H \pm 1.4\sigma$, are given for L=100 fb⁻¹. The signal significances are given for L=100 fb⁻¹ (at nominal lumin.) and L=30 fb⁻¹ (at low lumin.).

m _H , GeV	120	130	140
signal, direct	1190	1110	915
signal (WH, ZH, ttH)	93	76	58
γγ back.	29000	24700	20600
jet-jet back.	4600	4100	3550
γ-jet back.	5800	4900	4100
$Z \rightarrow e^+e^-$	-	-	-
Stat. sign. for 100 fb ⁻¹	6.5	6.5	5.8
Stat. sign. for 30 fb ⁻¹	3.9	4.0	3.5

Reconstructed two-photon invariant mass for $H\to\gamma\gamma$ decays with $\,m_H^{}{=}100\,GeV$ at high luminosity. The shaded histogram represents events containing at least one converted photon.

Expected $H \rightarrow \gamma \gamma$ signal for $m_H = 120$ GeV and for L=100 fb⁻¹ on top of the irreducible background (left) and after background subtraction (right).

$H \rightarrow b\overline{b}$

If $m_H < 2m_W$ --> $H \rightarrow b\overline{b}$ dominat decay mode (B.R. ~ 90%).

Direct production: QCD two-jet background too large: search not possible.

The search in the associated channels (W,Z,tt) is possible, but rather difficult.

Main physics background, for example, to the ttH channel:

- ttjj
- tt**Z**
- W+jets

Invariant mass distribution of tagged b-jet pairs in fully reconstructed $\bar{t}tH$ events (m_H =100 GeV) above the background, for L = 100 pb⁻¹. The points with the error bars represent the result of a single experiment and the dashed line shows the background distribution.

The extraction of a Higgs signal from the ttH process, with H \rightarrow b $\overline{\rm b}$, appears feasable as long as

the two top decays are fully reconstructed with high efficiency: \rightarrow excellent b-tagging capability is demanded.

$$H \rightarrow ZZ^* \rightarrow 4I$$

- The best channel to search for the SM Higgs in the mass range $\sim 130 < m_H < 2m_Z$;
- The B.R. is larger than B.R. $(H \rightarrow \gamma \gamma)$ and increases with m_H up to $2m_W$;
- Background:
 - Irreducible -

- pp
$$\rightarrow$$
 ZZ*; pp \rightarrow Z γ *;

- Reducible -
 - pp \rightarrow tt; Zb \overline{b}
- Trigger: two leptons with $p_T>20$ GeV and $|\eta|<2.5$;
- Offline selection:
 - two additional leptons with $p_T>7$ GeV and $|\eta|<2.5$;
 - invariant mass of one pair of leptons (appropriate charge and flavour) compatible with the Z mass; invariant mass of the other pair larger than 15 GeV.

$$H \rightarrow ZZ^* \rightarrow 4I$$
 (2)

Higgs mass reconstruction at low luminosity of $H \to \mu^+ \mu^- \mu^+ \mu^-$ (left plot) and $H \to e^+ e^- e^+ e^-$ decays (right plot); m_H =130 GeV.

Signal and background rates after all selection cuts and signal significances as a function of m_H . L=100 fb⁻¹.

m _H , GeV	120	130	150	170	180
Signal	10.3	28.7	67.6	19.1	49.7
tt	0.05	0.10	0.13	0.12	0.12
Zbb	0.53	0.79	1.14	1.01	1.02
ZZ*	3.53	6.36	7.03	7.54	7.61
ZZ>ttll	0.33	0.51	0.62	0.20	0.06
Signifi- cance	3.8	10.3	22.6	5.3	16.7

$$H \rightarrow ZZ \rightarrow 4I$$

- The best channel to search for the SM Higgs in the mass range $2m_Z < m_H < 700$ GeV ("Gold Plated Channel"): Easy detection/discovery up to ~ $m_H = 700$ GeV
- Background:
 - Irreducible -

- pp
$$\rightarrow$$
 ZZ; pp \rightarrow Z γ^* ;

- Reducible -
 - tt, ...
- Trigger: two leptons with $p_T>20$ GeV and $|\eta|<2.5$;
- Offline selection:
- two additional leptons with $p_T > 7$ GeV and $|\eta| < 2.5$;
- invariant mass of both pair of leptons
 (appropriate charge and flavour) compatible with
 the Z mass;

 $H \rightarrow ZZ \rightarrow 4I$

Expected $H \rightarrow ZZ \rightarrow ll$ signal for $m_H = 300$ GeV and for an integrated luminosity of 10 fb⁻¹. The signal is shown on top of the ZZ continuum before (left) and after (right) the $p_T max(Z_1,Z_2)$ cut is applied.

Higgs discovery can be made with 10 fb⁻¹, equivalent to 1 year data taking at low luminosity.

$H \rightarrow WW \rightarrow I\nu jj$

For Higgs masses of the order of 1 TeV the signal rate of the channel $H \rightarrow ZZ \rightarrow 4l$ is too small;

the Higgs decay in the channel $H \to WW \to l\nu jj$ increases the rate by a factor ~ 150 and makes possible the Higgs observation; additional channel is $H \to ZZ \to lljj$.

production mechanism: WW/ZZ fusion: $qq \rightarrow qqH \rightarrow qqW^+W^- \rightarrow qq+l\nu jj$

background:

- pp → W + jets → lv + jets; potentially is the largest source; suffers from theoretical uncertainties (higher-order corrections);
- $pp \rightarrow t\bar{t} \rightarrow l \nu j j b \bar{b}$;
- pp \rightarrow WW \rightarrow lvjj (continuum); low rate but irreducible background.

Signal reconstruction:

- a high-p_T central lepton ($|\eta|$ <2);
- large missing transverse energy from escaping neutrino;
- two central high-p_T jets from the second W decay in hadrons;
- two low-p_T tag jets in the forward region;
- low hadronic activity in the central region except $W \rightarrow jj$.

$H \rightarrow WW \rightarrow I \vee jj$ -2-

 $H\to WW\to l\nu jj$ with $m_H{=}1$ TeV; distributions of the jet-jet invariant mass (the hadronic W) for low (nominal) luminosity operation shown in the left (right) plot.

events $H \to WW \to l \nu jj$ with m_H =1 TeV; distribution of the invariant mass of the system $l \nu jj$ for the background and the and the summed background + signal.

overall sensitivity to the SM Higgs searches

ATLAS sensitivity for the discovery of a Standard Model Higgs boson. The statistical signficances are plotted for individual channels as well as for the combination of all the channel assuming integrated luminosity $L=100~{\rm fb}^{-1}$.

LEP and SM limits (preliminary)

Expected ultimate LEP limit on the Higgs mass:

$$m_H > 115 \text{ GeV}$$

Minimal Supersymmetric Standard Model Higgs

Complex investigation: two charged (H^{\pm}) and three neutral (h, H, A) physical states. At tree level all Higgs-boson masses and couplings can be expressed in terms of two parameters only; usually: m_A and $\tan\beta$.

Two different scenarios:

- if Susy particle masses are large, Higgs-boson decays kinematically allowed only in SM particles:
 - $h \rightarrow \gamma \gamma$; $h \rightarrow bb$; $H \rightarrow ZZ \rightarrow 4l$;
 - $H/A \rightarrow \tau\tau$, $\mu\mu$; $A \rightarrow Zh$; $H \rightarrow hh$;
- in case of light Susy particles the SM decay modes can be suppressed in favour of decays to charginos and neutralinos.

the MSSM Higgs

Two loop prediction for m_h as a function of m_A and for $\tan\beta=1.5$, 3, 30 in the minimal mixing scenarios

channels useful for MSSM Higgs detection:

• h, H, A
$$\rightarrow \gamma \gamma$$

•
$$t\bar{t}h, h \rightarrow b\bar{b}$$

•
$$H \rightarrow ZZ^* \rightarrow 41$$

• H/A
$$\rightarrow \tau \tau$$
, $\mu \mu$, $t\bar{t}$

• H/A
$$\rightarrow$$
 b \overline{b}

•
$$H \rightarrow hh$$

•
$$A \rightarrow Zh$$

•
$$H^{\pm} \rightarrow cs$$
, $H^{\pm} \rightarrow \tau \nu$.

$H/A \rightarrow \tau \tau$

In the MSSM H/A \rightarrow $\tau\tau$ rates are strongly enhanced over a large region of the parameter space. For example, at large tan β values the production is dominated by the associated production of bbH and bbA with B.R.(H/A \rightarrow $\tau\tau$) \approx 10%.

Standard Model $H \rightarrow \tau\tau$ not expected to be observable at the LHC because unfavourable signal/background.

Background:

- irreducible pp \rightarrow Z+X \rightarrow $\tau\tau+...$;
- QCD processes: $t\overline{t}$, $b\overline{b}$, and W+jets.

Trigger; based on the leptonic decay of one of the tau leptons: one isolated e/ μ with p_T>24 GeV, | η |<2.5

offline selection:

- focus the analysis on lepton-jet events (rate from leptonlepton is small)
- τ -jet E_T>40 GeV, $|\eta|<2.5$;
- $E_T^{miss} > 18 \text{ GeV};$
- transverse mass $m_T(lepton-E_T^{miss}) < 25 \text{ GeV}$;
- 1.8 < $\Delta \phi(\tau$ -jet lepton) < 4.5 (excluding the region $\pi \pm 0.25$)

$H/A \rightarrow \tau\tau$ -2-

The mass reconstruction of τ -jet pairs requires the estimate of the tau lepton energy: potential problem because the neutrinos in the event are undetected. This difficulty can be overcome with the measurement of E_T^{miss} and with a few reasonable assumptions:

- 1. assume that there are only three neutrinos in the event (two with same direction of flight from the leptonic decay and one from the hadronic decay);
- 2. assume that the direction of the neutrino system in each of the two taus coincides with the detected products;
- 3. assume that $m_{\tau}=0$.

The mass resolution that can be achieved is $\Delta m/m \approx 10\%$.

direct (left) and associated (right) H+A signal shown on top of the total background (yellow area) for three m_H/A values: 150, 300 and 450 GeV; L=30 fb⁻¹.

$A \rightarrow Zh$

- * Particularly interesting because it correspond to the simultaneous observation of two Higgs bosons.
- * Dominant A-boson decay mode for low $\tan\beta$ values and for $m_Z + m_h < m_A < 2m_t$.
- * Possible final states useful for signal detection:
- $A \rightarrow Zh \rightarrow b\overline{b}b\overline{b}$; offers the largest signal rate but it does require a four-jet trigger with ETthresh. = 40 GeV.
- $A \rightarrow Zh \rightarrow llbb$; can be easily triggered; good signal rate.
- A \rightarrow Zh \rightarrow ll $\gamma\gamma$; better kinematic constraints in the final state but expected rates too low.

The expected signal+background distribution for llbb invariant mass for m_A =300 GeV and $\tan \beta$ =1 (m_h =71 GeV) and for L= 30 fb⁻¹.

overall sensitivity to the MSSM Higgs searches

ATLAS sensitivity for the discovery of a MSSM Higgs boson (in the case of the minimal mixing). The 5σ discovery contours are shown in the (mA, $\tan\beta$) plane for individual channels and for an integrated luminosity L=300 fb⁻¹. Also included is the expected ultimate LEP2 limit (for L=200 pb⁻¹ per experiment).

Summary

- the LHC machine and the ATLAS and CMS detectors have a large potential in the investigation of one of the key questions of physics: the origin of electroweak symmetry-breaking.
- If a Standard Model Higgs boson exists, discovery over the full mass range, from the LEP2 limit to the TeV mass scale, will be possible after < 2 years running at low luminosity.
- In case of the MSSM Higgs bosons the full parameter space in the conventional (m_A , $\tan\beta$) space can be covered with an integrated luminosity of about 100 fb⁻¹.